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Despite an emerging consensus that uncertainty modu-
lates valuation (a process, or a combination of processes, 
of determining the current worth of the available options; 
Rangel, Camerer, & Montague, 2008), most researchers 
focus only on two types of uncertainty: risk (known out-
comes, known probabilities; von Neumann & Morgenstern, 
1944) and ambiguity (known outcomes, vague probabili-
ties; Ellsberg, 1961). The subjective expected utility (SEU) 
theory, prospect theory (Tversky & Kahneman, 1992), 
rank-dependent expected utility theory (Quiggin, 1993), 
and other theories treat unavailability of information as 
a negative characteristic of the environment and suggest 
that individuals reduce higher levels of uncertainty to risk 
by forming subjective beliefs about unknown character-
istics of the environment (the reductive viewpoint)—for 
instance, reducing ambiguity to risk by forming subjec-
tive beliefs about the unknown probabilities. Behavioral 
studies have shown that individuals demonstrate ambiguity 
aversion (for a review, see Camerer & Weber, 1992). Platt 
and Huettel (2008) suggested that parameters measuring 
the amount of ambiguity might be encoded in the brain (in 
the amygdala, the orbitofrontal cortex [OFC], or the ante-
rior insula). Other types of uncertainty, including conflict 
(known outcomes, conflicting information about prob-

abilities; Smithson, 1999), unawareness (decision makers 
are unaware of unknown outcomes; Modica & Rustichini, 
1994), and sample space ignorance (SSI; decision mak-
ers are aware of unknown outcomes; Smithson, Bartos, 
& Takemura, 2000), still remain understudied. Unaware-
ness is not likely to affect valuation (Modica & Rustichini, 
1999). However, conflict and SSI are as likely to modulate 
valuation as risk and ambiguity are, because under all these 
conditions decision makers are aware of the informational 
limitations during the valuation stage. To better understand 
how uncertainty modulates valuation, it is important to in-
vestigate the full variety of its types. It is also intriguing to 
examine whether individual preferences toward different 
types of uncertainty interact with their modulating effects. 
We begin this line of research by focusing the present ar-
ticle on uncertainties generated by the lack of information 
(ambiguity and SSI).

Baron and Frisch (1994) suggested that people regard 
any alternatives with missing information (MI) as inferior. 
Smithson et al. (2000) found that decision makers demon-
strate aversion toward SSI. The reductive viewpoint sug-
gests that individuals reduce SSI to ambiguity and then to 
risk by forming subjective beliefs, first about the partition 
of a sample space and then about the corresponding prob-
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activation for the three conditions. The partial-hierarchy 
hypothesis predicts that conjoined activation for SSI and 
ambiguity is also conjoined with activation for risk. Fi-
nally, the MI hypothesis predicts conjoined activation for 
SSI and ambiguity (attributed to MI processing) that is not 
fully conjoined with risk. We also examine whether brain 
activation patterns are stable with respect to individual 
preferences toward uncertainty by analyzing the relation-
ship between conjoined and unique activations associated 
with each type of uncertainty and individual preferences 
toward ambiguity and SSI.

Note that we do not make any predictions about the 
conflict environment since the focus of the article is on 
the environments with MI, and not on environments with 
too much information. However, we included the conflict 
condition in our experiment and in the conjunction analy-
ses because we wanted to isolate the brain regions that 
are more sensitive to unavailability of information (not to 
uncertainty in a general sense).

METHOD

Participants
Forty-two healthy right-handed participants (21  male, mean 

age 5 24.6 years) with normal or corrected-to-normal vision were 
compensated for participation. Data from 38 participants (20 male) 
with reasonable head motion (less than 1.7 mm) were included in 
the analysis.

Procedure and Stimuli
Before the fMRI session, the participants saw a box filled with 

cards from various card games (over 1,000 cards from 18 different 
games, but the participants did not have this information) and were 
informed that they would play a series of lotteries (see Supplemental 
Material S-3). For each lottery, the experimenter selected 100 cards 
from the box, asked the participants to guess the type of card (e.g., 
Trivial Pursuit) that they would draw from this mixed deck. The par-

abilities. Overall, it implies that the two MI environments 
affect valuation in a similar manner, with SSI possibly 
evoking higher levels of aversion in decision makers than 
ambiguity.

The strong form of the reductive viewpoint therefore 
suggests a full hierarchy for brain systems associated with 
different types of uncertainty. That is, brain activation 
under risk should be subsumed by activation under am-
biguity, which should be largely subsumed by activation 
under SSI (Table 1). The reductive viewpoint also implies 
that the main difference in brain activation patterns under 
ambiguity and SSI should be due to greater memory and 
calculation requirements under SSI (to create a subjective 
partition of a sample space before estimating probabili-
ties and evaluating expected values, or utilities, of each 
choice). Higher calculation load during SSI may recruit 
the inferior parietal lobe (IPL), a region often implicated 
in numerical representation (Piazza & Dehaene, 2004). 
Greater demands on working memory under SSI may re-
cruit IPL and the dorsolateral prefrontal cortex (Wager & 
Smith, 2003); limbic structures (the amygdala, the OFC, 
and the insula) may respond more strongly under SSI than 
under ambiguity because of the negative affect induced by 
higher levels of uncertainty under SSI.

In this article, we question whether the effect of MI on 
valuation is consistent with the reductive viewpoint and 
test the full-hierarchy hypothesis against three alternatives 
depicted in Table 1 in a simple gamble setting by isolat-
ing both conjoined and unique activations (Joseph, Partin, 
& Jones, 2002) associated with each type of uncertainty. 
All three hypotheses predict some unique activation as-
sociated with SSI and ambiguity, contrary to the reductive 
viewpoint. These hypotheses differ on how much con-
joined activation is expected among SSI, ambiguity, and 
risk. The no-hierarchy hypothesis predicts no conjoined 

Table 1 
Brain Activation Patterns Predicted by the Reductive Approach and Three Alternative Hypotheses

 
Full Hierarchy

 
Partial Hierarchy

 
No Hierarchy

Partial Hierarchy With 
Missing Information

 
 
 
 
 
 
 
 

R

A

SSI

 
 
 
 
 
 
 
 

RA SSI

 
 
 
 
 
 
 
 

R

A SSI

 
 
 
 
 
 
 
 

R
A SSI

MI

Logical Combinations Predicted Activation 

Unique activation for ambiguity (A):
A & ~R & ~SSI & ~C No Yes Yes Yes
Unique activation for ignorance (SSI):
SSI & ~R & ~A & ~C Yes Yes Yes Yes
Conjoined activation for A and SSI:
(A & SSI) & ~R & ~C Yes/No  No  No  Yes

Note—A, (partial) ambiguity; C, (partial) conflict; R, risk; SSI, (partial) sample space ignorance; MI, missing information. Activation associated 
with A was determined by isolating the voxels in which all of the following comparisons were statistically significant at p , .05: A . R, A . SSI, 
A . C, A . baseline. Activation associated with SSI was determined by isolating the voxels in which all of the following comparisons were statisti-
cally significant at p , .05: SSI . R, SSI . A, SSI . C, SSI . baseline. The conjoined activation for A and SSI was determined by the conjunction 
of the following contrasts: A . R, A . C, A . baseline, SSI . R, SSI . C, SSI . baseline, with differential activation for A and SSI subtracted 
out. Note that the reductive viewpoint does not make a definite prediction about the A–SSI-conjoined activation. That is, neither the presence nor 
absence of A–SSI-conjoined activation would contradict it.
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All of the participants were quizzed on how well they understood 
the instructions (see Supplemental Material S-3). Only after they 
had answered all of the questions correctly were they invited to per-
form the task during fMRI scanning.

Note that the design described here models partial ambiguity and 
partial ignorance. We chose this design because full ignorance (all 
outcomes unknown) and full ambiguity (all probabilities unknown) 
are relatively rare in reality. Furthermore, the comparative igno-
rance hypothesis (Fox & Tversky, 1995) suggests that this design 
should enforce ambiguity- and ignorance-averse choices (consistent 
with the reductive viewpoint). Finally, recall that we include a con-
flict condition in the experiment only to isolate brain regions that 
selectively respond to MI—for instance, to differentiate between 
processes associated with imprecise probabilities versus conflicting 
probabilities.

The participants underwent four fMRI scans (8 min each) in 
which all four types of gambles and a fixation cross were pseudo-
randomly ordered according to a simulation algorithm to maximize 
estimation efficiency (AFNI scripts available at http://afni.nimh 
.nih.gov/afni/doc/howto/3). Each gamble (or fixation cross) was 
on the screen for 6,500 msec, during which the participants chose 
among a sure gain, a risky card, and one of the two cards displaying 
a risky, ambiguous, ignorance, or conflict gamble. The interstimulus 
interval was 1,000 msec. All series were matched on SEU expected 
payoffs (Supplemental Tables S-1.1a–S-1.1d).

MRI data collection. A 3-tesla Siemens Trio MRI scanner with 
an eight-channel parallel head coil was used. For each run, 200 echo-
planar images were acquired (2,500-msec TR, 30-msec TE, 81º flip 
angle, 38 axial slices, 64 3 64 matrix, 3.5-mm3 resolution). A T1-
weighted MPRAGE anatomical scan with 1-mm3 voxels and a 1-min 
field-map scan were collected for each participant. Stimuli were pre-
sented using a high-resolution rear-projection system (Avotec, Stuart, 
FL) with buttonpresses recorded using a four-button fiber-optics re-
sponse pad. E-Prime software (Psychology Software Tools, Pittsburgh, 
PA) controlled stimulus presentation and the recording of responses 
with each trial triggered by a scanner-generated optical pulse.

Data Analysis
Behavioral data. We recorded the participants’ choices and the 

response time (RT). The effects of the trial order on the participants’ 
choices and the RT were estimated using multivariate and univariate 
repeated measures ANOVAs and paired t tests (see Supplemental 
Materials S-1c–S-1d). The participants’ economic preferences for 
ambiguity (γ1) and SSI (γ3) were estimated via a choice model using 
Bayesian Markov chain Monte Carlo estimation (see Supplemental 
Material S-1e).

fMRI data. fMRI data preprocessing steps were completed 
using FSL’s FEAT module (FMRIB’s Software Library, www.fmrib 
.ox.ac.uk/fsl): motion correction (Jenkinson, Bannister, Brady, & 
Smith, 2002); removal of a nonbrain tissue (Smith, 2002); spatial 
smoothing using a Gaussian 7-mm FWHM kernel; grand-mean in-
tensity normalization of the 4-D data set by a single multiplicative 
factor; high-pass temporal filtering (Gaussian-weighted least-squares 
straight-line fitting, with s 5 25 sec). Customized onset timing (on or 
off) was generated according to the order of experimental conditions. 
The main regressors of interest (risk, ambiguity, SSI, conflict, bet, 
sure gain, and left- or right-hand buttonpress) were convolved with a 
double-gamma hemodynamic response function. Note that a regres-
sor conflict was included in these analyses to isolate neurobiological 
responses associated selectively with MI environments.

The data were pooled over the four runs for individual partici-
pants. Spatially normalized contrast maps from individual partici-
pants were entered into mixed-effects group analysis. Each condi-
tion was contrasted with every other condition (e.g., ambiguity vs. 
risk, ambiguity vs. SSI, ambiguity vs. conflict, ambiguity vs. base-
line) by combining group statistical maps using logical operations 
(Joseph et al., 2002; Table 1). The conjoined activation for ambigu-
ity and SSI was determined using logical operators implemented 
in fslmaths by the conjunction of the following contrasts: ambigu-

ticipants could refuse to gamble and receive $3 or play and receive 
$10 if correct or nothing if incorrect.

The participants were informed that they would play lotteries 
under four different informational conditions. In each lottery, they 
had to choose between a sure payoff and a three-card gamble: one 
card of known type and known quantity and two cards forming risky, 
ambiguous, conflicting, or ignorance gambles. Risky (known types 
and quantities of all cards in the deck) and ambiguous (known types 
of cards in the deck but unknown composition of the cards) gambles 
were designed similarly to those in Hsu, Bhatt, Adolphs, Tranel, and 
Camerer (2005). However, for detailed discussion of the differences 
between the present study and the study by Hsu et al., see Supple-
mental Material S-1. In the conflict condition, the participants were 
given information about the quantities of types of cards in the deck 
from two conflicting sources. For instance, these sources agreed 
that there were exactly 20 Pokémon cards in the deck but disagree 
on how many tarot and Go Fish cards there were; Source A said 
that there were 30 tarot cards in the deck and 50 Go Fish cards, but 
Source B claimed that there were 50 tarot cards and 30 Go Fish 
cards. In the SSI condition, the participants were told that there were 
exactly 20 Pokémon cards and 80 other cards, but they were not 
given any information about the types of these other cards. Instead, 
the participants were given a suggestion to bet on a tarot card, even 
though there was no guarantee that the mixed deck contained any 
tarot cards. In this case, the participants could either choose a sure 
gain or choose to bet that they would draw from the deck a Pokémon 
card, a tarot card, or any other card.

The participants were told that they would play a series of simi-
lar gambles during fMRI scanning. They were also told that they 
would not be given any feedback while in the scanner on whether 
they had won or lost the gamble (because we were interested in the 
neurobiological processes associated with valuation). Instead, they 
were told that after the fMRI session, we would choose four gambles 
randomly (one from each condition), construct mixed decks of cards 
according to the description of the chosen gambles, and ask them to 
draw a card from each of the four decks. For each draw predicted 
correctly during the fMRI session, they would be paid $10; for each 
incorrect prediction, they would not be paid; and for each choice of 
sure gain, they would receive $3. In addition, they would be paid 
$10 for their time. Overall, the participant payments ranged from 
$10 to $50 (M 5 $38).

Before the fMRI session, the participants practiced on a computer 
(Figure 1 shows how each gamble was represented on the computer 
screen). During each trial, the participants had four options to choose 
from. The first option was a sure gain ($3). The second option was to 
bet on Card 1, which in all four gambles represented a risky option 
(known type and known quantity). The third option was to bet on 
Card 2, and the fourth option was to bet on Card 3.

In all risky gambles, the number of cards labeled Card 2 in the 
deck was equal to the number of those labeled Card 3; therefore, the 
probabilities of winning $10 associated with Card 2 and Card 3 were 
equal in each risky gamble. Under ambiguity, Card 2 and Card 3 
were informationally equivalent; therefore, following the ignorance 
prior hypothesis (Fox & Rottenstreich, 2003), we hypothesized that 
the subjective probabilities of winning $10 associated with Card 2 
and Card 3 were equal in each ambiguity gamble. In the ignorance 
gamble, Card 2 represented a suggested card, and Card 3 represented 
any other card (an “everything else” outcome). We emphasized in 
our instructions (see Supplemental Material S-3) that the suggested 
card might not be in the deck or that only the suggested and the risky 
card (Card 1) would be in the deck. We hypothesized that because 
of our suggestion, the participants constructed a subjective partition 
consisting of three outcomes: a risky card, a suggested card, and a 
not risky or suggested card (consistent with the findings of Fox & 
Rottenstreich, 2003). Since the probabilities both for the suggested 
card outcome and for the not suggested or risky card outcome ranged 
from 0 to 100 minus the number of risky cards, we hypothesized that 
subjective probabilities of winning $10 associated with Card 2 and 
Card 3 were equal in each ignorance gamble.
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whether individual economic preferences modulate the effect of var-
ious types of uncertainty on valuation, we evaluated whether log γ1 
and log γ3

1 predicted activation under ambiguity (PEA), activation 
under SSI (PESSI), and/or the difference between PEA and PESSI 
(PEA2SSI) in all ROIs. To that end, we employed a series of repeated 
measures ANCOVAs with the dependent variable PEA in ambiguity-
specific and ambiguity–SSI-conjoined ROIs; the dependent vari-
able PESSI in SSI-specific and ambiguity–SSI-conjoined ROIs; 
and the dependent variable PEA2SSI in ambiguity-specific, SSI-
specific, and ambiguity–SSI-conjoined ROIs. For each ANCOVA, 
the within-subjects factor was condition-specific clusters (the levels 
of which depended on whether ambiguity-specific, SSI-specific, or 
ambiguity–SSI-conjoined clusters were analyzed), and the between-
subjects covariates were log γ1 (or log γ3) and selected personality 
measures (see Supplemental Material S-1b). In all analyses, we uti-
lized the Greenhouse–Geisser statistic to choose between results 
of multivariate and univariate repeated measures ANCOVAs (Hert-
zog & Rovine, 1985). Repeated measures ANCOVA provides more 
power than would separate analyses of each cluster to determine 
whether some clusters are associated with, for instance, log γ1 when 

ity . risk, ambiguity . conflict, ambiguity . baseline, SSI . risk, 
SSI . conflict, SSI . baseline, with differential activation for am-
biguity and SSI subtracted out (Table 1). Recall that the conflict 
condition was included in these analyses to isolate neurobiological 
responses associated selectively with MI environments.

Region-of-interest analysis. We defined regions of interest 
(ROIs) as clusters of 27 or more contiguous voxels (Xiong, Gao, 
Lancaster, & Fox, 1995) in which parameter estimate (PE) values 
differed significantly from zero ( p , .05, two-tailed). Although 
this cluster threshold appears lenient, recall that we used a com-
bination of individual contrasts to construct the z statistic maps for 
ambiguity-specific, SSI-specific, or ambiguity–SSI-conjoined acti-
vation, and only voxels that were significant at p , .05 for each of 
the individual contrasts were in the resulting z statistic maps. There-
fore, this approach is fairly conservative (Nichols, Brett, Andersson, 
Wager, & Poline, 2005). Using the Mintun peak algorithm (Mintun, 
Fox, & Raichle, 1989), we located the local peaks (maximal activa-
tion) within each ROI.

ROIs were identified without accounting for individual differ-
ences in attitudes toward ambiguity or SSI. Therefore, to understand 
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Figure 1. Sample stimuli used in all four experimental conditions. In each condition, participants choose between a certainty payoff 
and a three-card gamble—one card of known type and known quantity, and two cards forming risky, ambiguous, conflicting, or igno-
rance gambles. In the risk condition (A), participants were given information about types and quantities of cards in Piles 2 and 3. In the 
ambiguity condition (B), participants were given information about types of cards in Piles 2 and 3 but only the total quantity of cards 
in Piles 2 and 3. In the conflict condition (C), participants were given information about types of cards in Piles 2 and 3 but conflicting 
information about the quantities of cards in each pile. In the sample space ignorance condition (D), participants were given information 
about the overall quantity of cards in Piles 2 and 3 but no information about possible card types in each pile. The participants were 
asked to treat a card type shown in the second pile as a suggestion and were told that there was no guarantee that this card would be 
included in the second or third pile.
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ent either under the ambiguity [t(38) 5 20.88, p 5 .385] 
or under the SSI [t(38) 5 20.718, p 5 .477] conditions; 
the differences in frequencies did not vary across condi-
tions [t(38) 5 20.080, p 5 .937] and were stable across 
trials [F(1,37) 5 0.24, p 5 .37].

Economic preferences. The means of γ1 (0.964) and 
γ3 (0.882) were close to 1 [γ1 (γ3) 5 1 implies a “rational” 
SEU agent, γ1 (γ3) , 1 implies tolerance toward ambiguity  
(SSI), and γ1 (γ3) . 1 implies aversion toward ambigu- 
ity (SSI)], did not differ significantly (the credible interval 
for the mean γ3 2 γ1 includes 0), and were strongly posi-
tively correlated (r 5 .85).

RT. On average, RTs across conditions did not differ 
significantly. The mean RT under risk was 2.19 sec (∆ 5 
0.7 sec), that under ambiguity was 2.29 sec (∆ 5 0.6 sec), 
and that under SSI was 2.26 sec (∆ 5 0.5 sec).

Brain Activation
Risk did not produce greater activation than the other 

conditions, most likely because the risky gamble was pres-
ent in each condition. Nevertheless, this outcome is consis-
tent with all of the models except the no-hierarchy model. 
The presence of ambiguity-specific, SSI-specific, and 
ambiguity–SSI-conjoined regions (Figure 2, Table 2) in-
dicates that uncertainties generated through MI modulate 
valuation differently than uncertainties generated through 
conflicting information. Six regions (located primarily in 
the frontal lobe) showed conjoined activation for ambigu-
ity and SSI but were not associated with the risk condition, 
which rules out both the partial-hierarchy and no-hierarchy 

others are not (through an interaction of cluster and behavioral or 
personality covariate), and it can identify significant variations in 
the correlations across clusters.

These additional analyses tested the hypothesis that individual pref-
erences toward ambiguity (or SSI) do not modulate the effect of ambi-
guity and SSI on valuation (i.e., that PEA, PESSI, and PEA2SSI do not 
correlate significantly with individual economic preferences). In all 
clusters showing a main effect of ambiguity or ignorance aversion or 
an interaction effect involving ambiguity or ignorance aversion, a 95% 
confidence interval was generated for the regression lines PEA2SSI 
versus log γ1 (or log γ3). If 95% confidence intervals for PEA2SSI in 
ambiguity-specific and SSI-specific clusters do not include 0 for all 
individuals despite their economic preferences, it indicates a robust 
ambiguity-specific or SSI-specific network that is not modulated by 
preferences toward ambiguity (SSI). If the 95% confidence interval 
for PEA2SSI in ambiguity–SSI-conjoined clusters includes 0 for all in-
dividuals despite their economic preferences, it indicates that a shared 
network for processing MI is not modulated by preferences toward 
ambiguity (SSI).

RESULTS

Behavioral Measures
Choice between Card 2 and Card 3. The results 

of our analyses (see Supplemental Material S-1c) were 
consistent with the hypothesis that the subjective prob-
abilities of winning $10 associated with choosing Card 2 
and Card 3 are equal under ambiguity and SSI. Specifi-
cally, under ambiguity (SSI), Card 2 was chosen 13.5% 
(14.8% under SSI) of the time and Card 3 was chosen 
15.7% (17.5%) of the time. The relative frequencies of 
choices of each of the cards were not significantly differ-
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Figure 2. Statistical maps for (A) ambiguity-specific activation, (B) ignorance-specific activation, and (C) ambiguity–sample-space-
ignorance (SSI) conjoined activation. The circled and numbered regions are highlighted in Table 2: (1) left insula (226, 26, 4), (2) left 
lateral orbitofrontal (230, 54, 24), (3) right anterior cingulate (6, 30, 36), (4) left inferior parietal (236, 250, 40), (5) right inferior 
parietal (46, 250, 44), (6) left inferior frontal (238, 50, 212), (7) left middle orbitofrontal (228, 52, 214), (8) left middle frontal (230, 
52, 6), (9) left middle frontal (240, 20, 40).
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clusters, where PEA2SSI was negative, a main effect for 
log γ1 was significant [F(1,36) 5 5.81, p 5 .02], but 
the interaction was not significant. In the six ambiguity–
SSI-conjoined clusters, the main effect was marginal 
[F(1,36) 5 3.29, p 5 .08], but the interaction was not 
significant.

Since our analyses did not reveal any significant varia-
tions in the correlations across clusters in SSI-specific 
and ambiguity–SSI-conjoined regions, we generated 
95% prediction bands only for the main effect of log γ1 
on PEA2SSI in the SSI-specific clusters combined and 
ambiguity–SSI-conjoined clusters combined; we also 
generated a 95% prediction band for the effect of log γ1 
on PEA2SSI in an ambiguity-specific cluster (Figure 3). 
This reveals a significant heterogeneity in activation pat-
terns across individual preferences toward ambiguity. 
In the four SSI-specific clusters, PEA2SSI became sig-
nificantly negative only for ambiguity-averse individu-
als and insignificant for ambiguity-tolerant individuals. 
In the ambiguity-specific cluster, the positive PEA2SSI 
was significant only for ambiguity-tolerant individuals 
and insignificant for ambiguity-averse individuals. In 
the ambiguity–SSI-conjoined regions, PEA2SSI was posi-
tive for ambiguity-tolerant individuals and negative for 
individuals high in ambiguity aversion. Despite a high 
positive correlation between γ1 and γ3, PEA2SSI in all of 
these regions did not correlate with γ3, suggesting that the 
modulating effect of the uncertainties generated through 
the lack of information is not influenced by individual 
preferences toward SSI.

Figure 3 depicts another way to visualize the relation-
ships between preferences toward ambiguity and brain-
activation patterns. Ambiguity-tolerant and ambiguity-

hypotheses but supports the MI hypothesis, positing unique 
brain systems associated with processing MI.

Ambiguity more strongly activated the left anterior in-
sula (LaINS) than did the other conditions, which rules 
out the full-hierarchy model. Activation in the LaINS 
under the SSI and risk conditions did not differ statisti-
cally from the baseline activation ( p . .1).

SSI activated several regions more strongly than did the 
other conditions: a region in the left lateral OFC, broad 
areas in bilateral inferior parietal lobe (IPL), and a region 
in the left anterior cingulate cortex (ACC). Ambiguity ac-
tivated the left IPL more strongly than did risk [F(1,30) 5 
8.62, p 5 .006], which replicates Huettel, Stowe, Gordon, 
Warner, and Platt (2006).

Effect of Individual Differences on  
Brain Activation Patterns

The repeated measures ANCOVAs for ambiguity–SSI-
conjoined regions revealed that activation in these clus-
ters under ambiguity did not correlate with log γ1, but 
positively correlated with log γ3 [F(1,36) 5 4.96, p 5 
.032] under SSI. Because no interactions with clusters 
were significant in either analysis, all six ambiguity–
SSI-conjoined regions showed significant positive cor-
relations with log γ3. The ANCOVA for the ambiguity-
specific region revealed that activation under ambiguity 
in the LaINS was negatively associated with neuroticism 
[F(1,32) 5 6.846, p 5 .013, r 5 2.42].

In all ROIs (ambiguity-specific, SSI-specific, and 
ambiguity–SSI-conjoined clusters) PEA2SSI was nega-
tively correlated with log γ1. In LaINS, where PEA2SSI 
was positive, this correlation was marginally signifi-
cant [F(1,36) 5 3.37, p 5 .08]. In the four SSI-specific 

Table 2 
Brain Activation Associated With Ambiguity and SSI

Correlations With
Behavioral Parameters

and Selected Personality
Scales

Region  x  y  z  Size  BA  Max (z)  PEA  PESSI  PEA2SSI

Ambiguity-Specific Region
A & ~R & ~SSI & ~C

Left insula 226 26 4 42 – 4.42 2N N/A 2γ1∗ a

SSI-Specific Regions
SSI & ~R & ~A & ~C

Right anterior cingulate 6 30 36 35 32 6.98 N/A – 2γ1∗

Right inferior parietal 46 250 44 455 40 7.84 N/A – 2γ1∗

Left lateral orbitofrontal 230 54 24 37 11 5.40 N/A – 2γ1∗

Left inferior parietal 236 250 40 699 40 8.51 N/A – 2γ1∗

Ambiguity–SSI-Conjoined Regions
(A & SSI) & ~R & ~C

Left fusiform 236 252 218 48 37 7.63 – 1γ3∗ 2γ1∗ a

Left orbitofrontal 228 52 214 29 11 4.67 – 1γ3∗ 2γ1∗ a

Left inferior frontal 238 50 212 46 47 7.91 – 1γ3∗ 2γ1∗ a

Left middle frontal 230 52 6 30 10 5.95 – 1γ3∗ 2γ1∗

Right middle frontal 44 22 42 31 44 5.30 – 1γ3∗ 2γ1∗ a

Left middle frontal 240 20 40 124 44 5.23 – 1γ3∗ 2γ1∗ a

Note—BA, Brodmann’s area; PEA, activation under ambiguity; PESSI, activation under sample space igno-
rance; PEA2SSI, the difference between PEA and PESSI; N, neuroticism.  *Log transformation.  aCorrelation 
is marginal.
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Figure 3 illustrates that ambiguity-specific activation in 
the LaINS was driven primarily by the ambiguity-tolerant 
individuals. In addition, SSI-specific activation in the four 
SSI-specific clusters was driven by the ambiguity-averse 
individuals. Moreover, activation in the six ambiguity–
SSI-conjoined regions for ambiguity-tolerant individu-
als was stronger under the ambiguity than under the SSI 
condition, whereas for ambiguity-tolerant individuals, the 

averse individuals were defined as those 1 SD below 
and above the means for γ1 (Cohen & Cohen, 1983). The 
means of PEA and PESSI for ambiguity-averse (log γ1 . 
0.17) and ambiguity-tolerant (log γ1 , 20.42) individuals 
in all ROIs were plotted when we detected a significant 
correlation between economic preferences and PEA2SSI. 
Recall that the interaction effect of preferences toward 
ambiguity on PEA2SSI was significant.

Ambiguity-Specific Regions (Logical Combination: A & ~R & ~SSI & ~C )

A tolerant log γ1 A averse 

PE
A 

– 
PE

SS
I
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A 

– 
PE
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I

PE
A 

– 
PE
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I

SSI-Specific Regions (Logical Combination: SSI & ~R & ~A & ~C )

A tolerant log γ1 A averse 

Ambiguity–SSI-Conjoined Regions (Logical Combination: [A & SSI ] & ~R & ~C )

A tolerant log γ1 A averse 
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PESSI

A tolerant A averse

PEA

PESSI
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Figure 3. Predicting brain activation in ROIs from individual preferences toward ambiguity. The left panels depict the 
predicted main effect of log γ1 on PEA2SSI and a 95% prediction band in ambiguity-specific, sample-space-ignorance 
(SSI) specific, and ambiguity–SSI-conjoined clusters. The right panels depict the interaction between the mean PEA, the 
mean PESSI, and preferences toward ambiguity (ambiguity tolerance, log γ1 , 20.42, vs. ambiguity aversion, log γ1 . 
0.17). Horizontal stripes represent a region of ambiguity tolerance, and vertical stripes represent a region of ambiguity 
aversion.
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Ambiguity-Specific Network
Ambiguity uniquely activated the LaINS, and neuroti-

cism was negatively correlated with insula activation. The 
anterior insula was activated for decision making under 
risk and ambiguity (Rushworth & Behrens, 2008) and 
under higher levels of uncertainty (Rolls, 2008) or with 
subjective uncertainty (Feinstein, Stein, & Paulus, 2006). 
Therefore, the left insula activation is not surprising, given 
that ambiguity is associated with imprecise probabilities. 
The negative correlation with neuroticism is unexpected 
in light of other findings that the right insula is associated 
with higher levels of neuroticism (Paulus, Rogalsky, Sim-
mons, Feinstein, & Stein, 2003). However, in most studies 
on the role of the insula in decision making, effects in the 
right or bilateral insula have been reported, with the as-
sociation with neuroticism only in the right hemisphere. 
The fact that only the left insula was activated in the pres-
ent study may point to a somewhat different role from that 
described in other studies.

Craig (2005) proposed that the left insula is associated 
with parasympathetic autonomic responses (rather than 
with sympathetic responses, as is the right insula). The 
parasympathetic system is associated with behavior that 
does not require an immediate response. Recall that se-
lective activation in the LaINS was driven by ambiguity-
tolerant individuals. Possibly, the LaINS response reflects 
a tendency to rest and repose prior to making a response 
and may be important for intuitive decision making, which 
may be preferred by ambiguity-tolerant individuals under 
ambiguity. Ambiguity-averse individuals, on the other 
hand, may rely more on deliberative processing, which 
may not require pausing before starting calculations.

Interestingly, the selective activation in LaINS under am-
biguity was not reported in Hsu et al. (2005) as distinguish-
ing between ambiguity and risk. We attribute the discrep-
ancy between our results and those reported by Hsu et al. 
to several important distinctions between designs used in 
our studies. First, we ensured that the type of gamble was 
not confounded with the probability splits, whereas in Hsu 
et al. all ambiguous gambles had the same split (the subjec-
tive probabilities associated with winning and losing were 
always 50%), whereas the splits for risky gambles were 
varied. Thus, in a sense, Hsu et al. contrasted a series of 
risky gambles with the same ambiguous gamble. If the par-
ticipants recognized that they were given the same ambigu-
ous gamble time after time, they would not necessarily rely 
each time on intuition to evaluate it. Second, in our study, 
we used only card gambles, whereas Hsu et al. pooled to-
gether several conditions (card gambles, knowledge ques-
tions, and an informed-opponent condition). Therefore, 
our design models the risk condition more carefully: The 
participants were given the exact probabilities of winning 
associated with each card. Whereas in both the knowledge 
and the informed-opponent treatments of Hsu et al., even 
though the participants had a better knowledge about the 
environments classified as risky than they had about the 
environments classified as ambiguous, under risk they still 
had to rely on their subjective estimation of the underlying 
probabilities (what, in our terminology, defines ambigu-
ity). Therefore, although the contrasts used in Hsu et al. 

activation was stronger under the SSI condition. How-
ever, ambiguity-averse individuals activated these regions 
more strongly than ambiguity-tolerant individuals. Over-
all, according to the 95% confidence intervals, activation 
patterns of ambiguity-tolerant individuals significantly 
differed from the activation patterns of ambiguity-averse 
individuals. Most importantly, the activation patterns of 
ambiguity-averse individuals were consistent with the 
reductive approach of modern decision-making theories, 
because SSI induced either more activation than ambigu-
ity or the same level of activation as ambiguity, imply-
ing that activation for ambiguity was subsumed under 
activation for SSI. However, the activation patterns of 
the ambiguity-tolerant individuals violated the reductive 
viewpoint, because ambiguity induced more activation 
than SSI in some brain regions.

DISCUSSION

The reductive framework for decision making under un-
certainty predicts more activation for SSI than for ambigu-
ity during the valuation stage. This outcome emerged only 
for the ambiguity-averse individuals in regions shared for 
processing MI (primarily, the lateral prefrontal cortex). In 
these same regions and in the ambiguity-specific region 
(LaINS), the ambiguity-tolerant individuals showed more 
activation for ambiguity than for SSI, which is inconsistent 
with the reductive viewpoint. Consequently, the reductive 
viewpoint was supported for the ambiguity-averse individ-
uals but disconfirmed for the ambiguity-tolerant individu-
als. This finding calls for new decision theories that can 
explain and predict decision making by ambiguity-tolerant 
individuals.

MI-Conjoined Neurobiological Network
The six ambiguity–SSI-conjoined regions that were 

modulated by ambiguity tolerance were primarily in the 
bilateral middle frontal gyrus, which is associated with nu-
merous cognitive functions. With regard to decision making, 
one suggestion is that they are associated with the selection 
of a task context—namely, what information is relevant for 
a decision and in what context that information should be 
evaluated (Brass & von Cramon, 2004). These regions have 
also been associated with deliberative rather than intuitive 
decision making (Kuo, Sjöström, Chen, Wang, & Huang, 
2009) and with working memory (Wager & Smith, 2003). 
Therefore, the recruitment of these regions in the present 
study may reflect online storage of information that varies 
according to degree of uncertainty in different environ-
ments and information processing demands that vary with 
individual decision-making style (which might correlate 
with individual tolerance toward ambiguity). For instance, 
ambiguity-averse individuals may attempt to arrive at a 
decision via deliberative processing, therefore activating 
these regions more under SSI, when uncertainty is great-
est (consistent with the reductive viewpoint). In contrast, 
ambiguity-tolerant individuals may employ more intuitive 
and less deliberative processing, activating these regions 
only for storage of information available about the environ-
ment (more under ambiguity than under SSI).



390        Pushkarskaya, Liu, Smithson, and Joseph

basis of decision making under uncertainty will require 
consideration of the variation in individual levels of toler-
ance for different types of uncertainty.
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