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Abstract

The “less is more effect” (LIME) occurs when a recognition-dependent agent has a greater probability of choosing the
better item than a more knowledgeable agent who recognizes more items. Goldstein and Gigerenzer (2002) defineα as
the probability that a correct choice is made on the basis of recognition alone andβ the probability that a correct choice
is made when both items are recognized (via additional cues). They claim that a LIME occurs ifα > β (α > 1/2)
andα andβ remain constant as the number of recognized items,n, varies. In fact, it can be shown that neither of these
parameters generally remains constant asn varies, and neither of them are simple functions ofn. Therefore, a new
theoretical basis for the LIME is needed. This paper provides mathematical results for understanding when the LIME
can occur and elucidates implications of these results. The major findings presented here are as follows:

• Demonstrations that the LIME can occur whenα ≤ β and fail to occur whenα > β, and derivation of the
conditions for these co-occurrences;

• A new characterization of the conditions under which the LIME occurs;
• Generalizations of this characterization to handle imperfect recognition;and
• Characterization of when the LIME occurs as more items become recognized.

The primary implication of these results is that the advantage of the recognition cue depends not only on cue validities,
but also on the order in which items are learned. This realization, in turn, suggests that research in this area should
incorporate a more dynamic focus on learning and memory processes, and the effects of reputational information.
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1 Introduction

In choosing between two items, an agent who recognizes
one item but not the other may use this recognition cue to
make the choice, whereas one who recognizes both items
must use other cues and one who recognizes neither must
guess. The “less is more effect” (LIME) occurs when
a recognition-dependent agent has a greater probability
of choosing the better item than a more knowledgeable
agent who recognizes more items. This paper provides
some new mathematical results for understanding when
the LIME can occur and elucidates implications of these
results.

Many researchers investigating the descriptive valid-
ity of the recognition heuristic report high usage rates.
Goldstein and Gigerenzer (2002) reported a 90% usage
rate. Serwe and Frings (2006) found that 88% of their
lay and 93% of their amateur samples used the recogni-
tion heuristic in choosing tennis match winners. Newell
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and Shanks (2004) reported 88% usage in a stock-market
setting. Pachur and Biele (2007) found that the recogni-
tion heuristic accounted for 90% of the forecasts in their
study, more than four other candidate mechanisms. Fi-
nally, Pohl (2006) observed that additional cue knowl-
edge increased the usage of the recognition heuristic over
cases where recognition of an object did not carry any
other knowledge with it.

However, empirical evidence for the LIME is equiv-
ocal, at least on face value. Goldstein and Gigerenzer
(2002), Serwe and Frings (2006), and Scheibehenne and
Bröder (2007) are definitely in the “yes” camp, Pohl
(2006) finds that the LIME is possible but claims only
small effect-sizes, Andersson, Edman and Ekman (2005)
and Ayton and Onkal (1997) present “less is as good as
more” evidence, and Pachur and Biele (2007) are decid-
edly in the “no” camp. Simulation studies based on real
ecologies lend some support to the prospect of LIMEs
(e.g., Goldstein & Gigerenzer, 2002, and Dougherty,
Franco-Watkins & Thomas, 2008). Moreover, Schooler
and Hertwig (2005) and Pleskac (2007) present simula-
tion results suggesting that imperfect recognition may ac-
tually increase the likelihood of a LIME. Matters are fur-
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ther complicated by shortcomings in some of the studies
and an apparent lack of consensus on the requirements
for a test of the LIME. These exigencies, combined with
the results presented in this paper, render the corpus of
empirical studies problematic and inconclusive. I shall
return to this matter toward the end of this paper.

Goldstein and Gigerenzer (2002) defineα as the prob-
ability that a correct choice is made on the basis of recog-
nition alone andβ the probability that a correct choice
is made when both items are recognized (via additional
cues). They claim that a LIME occurs ifα > β (α >
1/2) andα andβ remain constant as the number of rec-
ognized items,n, varies. This view has been widely ac-
cepted and used as a guide for when to expect the LIME
(e.g., Pachur & Biele 2007). Pleskac (2007) concurs with
Goldstein and Gigerenzer and makes an analogous claim
under conditions of imperfect recognition.

However, Goldstein and Gigerenzer assume thatα and
β remain constant as the number of recognized items,n,
varies. In fact, neither of these parameters necessarily re-
mains constant asn varies, and neither of them is a sim-
ple function ofn. We shall see demonstrations of these
assertions shortly, and indeed Goldstein and Gigerenzer
allowed that the assumption is not realistic. We shall see
how various modifications of this assumption lead to the
absence or presence of a LIME.

A sufficiently rigorous approach to this problem be-
gins by distinguishing between the probability,β, of cor-
rectly choosing between pairs of recognized items using
the knowledge cue, and the probability,vc, of correctly
choosing between any pair of items using the knowledge
cue (i.e.,vc is the knowledge cue validity). To begin, I
will demonstrate that the LIME can occur whenα < β.
In Table 1 we have 10 items of which 6 are recognized.
The left-most column shows the rank of each item on the
outcome and the fifth (Cue Rank) column shows their
ranks on a knowledge cue to be used for choosing be-
tween two recognized items. For purposes of simplifica-
tion and clarity, throughout this paper I will restrict dis-
cussion to a rank-order knowledge cue with no ties.

First, let us determineα. From Table 1, the number of
correct choices is the sum of the 0-entries in the “Recog.”
column whose ranks is greater (i.e., worse) each of the 1
entries:Cr = 4+4+3+3+2+1 = 17. The number of
incorrect choices is the sum of the 1-entries whose rank
is greater than each of the 0 entries:Dr = 4+2+1 = 7.
The result isα = 17/(7 + 17) = .708.

We use a similar procedure to compute the probabil-
ity of making a correct choice using the knowledge cue,
i.e., the knowledge cue validityvc. TheCc column in
Table 1 shows the number of items ranked worse than
the item in each row that would be correctly identified
by comparing that item’s cue-rank with that of the other
items. For example, the first item has cue-rank 1 so

Table 1: LIME whenα < β

Outcome Cue

Rank Recog.Cr Dr Rank Cc Dc Ccr Dcr

1 1 4 0 1 9 0 5 0

2 1 4 0 2 8 0 4 0

3 0 0 4 9 1 6 0 0

4 1 3 0 6 3 3 2 1

5 1 3 0 5 3 2 2 0

6 0 0 2 4 3 1 0 0

7 1 2 0 8 1 2 1 0

8 0 0 1 3 2 0 0 0

9 1 1 0 10 0 1 0 0

10 0 0 0 7 0 0 0 0

17 7 30 15 14 1

by using the cue to compare it with the other 9 items
we would correctly choose the first item as the better-
ranked. In contrast, the third item has cue-rank 9, so
we would make only 1 correct choice in comparing its
cue-rank with those of the items that actually are ranked
worse. TheDc column shows the corresponding num-
ber of incorrect choices. There areCc = 30 correct and
Dc = 15 incorrect choices, resulting in a cue validity
vc = 30/(30 + 15) = .667. Likewise, from the last two
columns in Table 1, the probability of choosing correctly
between pairs of recognized items by using the knowl-
edge cue isβ = Ccr/(Ccr+Dcr) = 14/(14+1) = .933.

Note thatvc 6= β. That is, we have an example of the
fact that the probability of making a correct choice be-
tween pairs from the 6 recognized items is not the same
as the probability of making a correct choice when all
10 items are recognized. Moreover, bothα andβ can
vary depending on the order in which the remaining items
are learned (i.e., become recognizable). For example,
if the next item learned is item 6 or 10 then the result
will be β = .857, whereas if the next is item 3 or 8
then the result will beβ = .809. Likewise, if item 6
is learned nextα = .714 whereas if item 10 is learned
nextα = .524. These examples show variation inα and
β asn varies, and they demonstrate that both parameters
can take different values for alternative collections of rec-
ognized items having the samen.

Moreover, there is no generalized relation between the
range of possible values ofβ and vc. Assumingvc ≥
1/2 (i.e., use any negative cue in reverse), there is always
at least one pair of items whose rank-order matches the
order of the cue, so that if only those two items have been
learned thenβ = 1. Conversely, ifvc < 1 then there is
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always at least one pair whose rank-order and cue-order
are reversed so that if only those two items have been
learned thenβ = 0. By the same argument,α can range
from 0 to 1 depending on the order in which items are
learned.

Now, we shall build up the probability of making a cor-
rect choice between pairs of items in Table 1, initially fol-
lowing Goldstein and Gigerenzer. For those pairs where
one item is recognized and the other isn’t, we use the
recognition cue and have

P (correct&untied) =
2αn(N − n)

N(N − 1)
,

whereN is the total number of items andn is the number
of recognized items. The probability of a correct choice
when both items are unrecognized (i.e., where a guess
must be made) is

P (correct&neither) =
(N − n)(N − n− 1)/2

N(N − 1)
.

Finally, the probability of a correct choice when both
items are recognized is

P (correct&both) =
βn(n− 1)

N(N − 1)
.

Summing these terms gives Goldstein and Gigerenzer’s
(2002) formula. They denoteP (correct) by f(n), so
using their notation and plugging in the appropriate num-
bers yieldsf(n) = .756. Thus, we have the LIME be-
causevc = .667 < f(n) = .756, but we also have
α = .708 < β = .933, so we observe that ifβ is al-
lowed to vary (and thus differ fromvc) a LIME can occur
whenα < β.

When α and β are not constant, not only can the
LIME occur whenα < β, but the conditionα > β
does not guarantee a LIME. A counter-example can be
constructed by modifying the one in Table 1. Sup-
pose the knowledge cue ranks for the 10 objects are
{5, 4, 3, 2, 1, 6, 7, 8, 9, 10}. Then the knowledge cue va-
lidity is vc = 35/(35 + 10) = .778. Now suppose the 6
recognized objects have outcome ranks{1, 2, 3, 4, 9, 10}.
Thenα = 16/(16 + 8) = .667 andβ = 9/(9 + 6) = .6,
andα > β is satisfied. However, bothα andβ are less
thanvc so no weighted sum of them and 1/2 is going to
exceedvc. Indeed,f(n) = .622, so the LIME does not
occur. I shall address the issue of how common are oc-
currences of the LIME whenα < β and no LIME when
α > β in sections to follow.

Finally, we need to distinguish among various defini-
tions of the LIME. Goldstein and Gigerenzer point out
that there are at least three versions: One comparing more
and less knowledgeable agents, another comparing per-
formance in different domains, and a third comparing

performance as an agent learns new items. The version
we have been discussing is the first kind,vc < f(n),
which Katsikopoulos (2010) calls the “full experience”
LIME. But another isf(n) > f(n+ 1), which can occur
regardless of whethervc < f(n). Let us call this a “lo-
cal LIME.” The difference between the two is simply that
vc = f(N).

The next section of this paper investigates the co-
occurrence of the LIME andα < β. The third lays out the
conditions under which the LIME can occur under con-
ditions of perfect and imperfect recognition. The fourth
deals with the effect of learning items, and there is a brief
concluding section. All technical arguments (theorems
and proofs) are relegated to the Appendix.

2 When do the LIME and α < β co-
occur?

In this section I will demonstrate that the co-occurrence
of the LIME andα < β is likely to be quite common-
place. My purpose is twofold: First, to enhance our un-
derstanding of their co-occurrence and, second, to de-
velop a perspective that extends our understanding of the
LIME and performance of the recognition heuristic gen-
erally. To begin, I will alter the Goldstein-Gigerenzer no-
tation by usingvr = α andvcr = β. Thus, all cue validi-
ties will be denoted byv with an appropriate subscript.
Throughout this paper, without much loss of generality,
we will limit the treatment of the knowledge cues to a
single cue with ranks and no ties.

The Goldstein-Gigerenzer formula forf(n) is

f(n) =
2vrn(N − n) +Qr/2 + vcrn(n− 1)

N(N − 1)
, (1)

whereQr = (N − n)(N − n− 1). This can be rewritten
as

f(n) =
γrn(N − n) + γcrn(n− 1)/2

N(N − 1)
+ 1/2, (2)

whereγr = 2vr−1 andγcr = 2vcr−1. Theseγ parame-
ters are Goodman and Kruskal’s gamma coefficient of as-
sociation. For instance,γcr = (Ccr−Dcr)/(Ccr+Dcr).
Equation (2) shows that deviations off(n) from 1/2 may
be written as a weighted sum of gamma coefficients. It
will prove useful at times to interpret the LIME in these
terms.

First, substituting(1 + γc)/2 for vc, from equation (2)
we may express the LIME as

γc <
2γrn(N − n) + γcrn(n− 1)

N(N − 1)
. (3)

Second,α < β iff γr < γcr. Combining this latter in-
equality with the LIME inequality above and rearranging
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Figure 1: Number of recognized items by probability of
correct choice
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terms, we satisfy both the LIME andα < β iff

γcN(N − 1)− γcrn(n− 1)

2n(N − n)
< γr < γcr. (4)

It is also possible for the LIME to occur even whenvr <
vc under this condition:

γr < γc <
2γrn(N − n) + γcrn(n− 1)

N(N − 1)
. (5)

It certainly is possible for these inequalities to be sat-
isfied under conditions that are quite ordinary. In partic-
ular, it can be shown (see Theorem 1 in the Appendix)
that when equations (4) or (5) are satisfied ifn < N
then it is always the case thatvc < vcr. This result re-
veals that the LIME andα < β always can co-occur
for some appropriaten if the recognition heuristic moder-
ates the knowledge cue validity so as to increase it within
the subset of recognized items. Thus, the knowledge
cue “piggy-backs” on the recognition heuristic. Return-
ing to the simple example in the Introduction, we can
see that the LIME andα < β co-occur and, indeed,
vc = .667 < vcr = .933.

It is all very well to show that the LIME andα < β can
co-occur once, but can they repeatedly co-occur as more
items become recognized? Suppose we have 20 items
ranked 1,2,..., 20 and let the knowledge cue have ranks 2,
5, 10, 12, 19, 20, 4, 6, 3, 9, 8,7 , 1, 14, 13, 11, 15, 18, 17,
16. The knowledge cue validity isvc = .663. Now let
the order in which these items become recognized be 1,
3, 7, 4, 6, 12, 14, 2, 19, 18, 9, 15, 20, 5, 8, 11, 10, 13, 16,
17. Figure 1 plots the resulting values forf(n) as items
become recognized withvc represented by a horizontal
line at .663, withvc < f(n) and therefore the LIME on
12 occasions. Figure 2 plots the cue validity within the
recognized items by the recognition validity at each turn.
On 10 occasionsα < β and 6 of those co-occur with the
LIME.

Of course, existence proofs and demonstrations do not
indicate whether this co-occurrence is common or not,

Figure 2: Cue validity of recognized items by recognition
validity

0.6 0.7 0.8 0.9 1.0
vcr0.5

0.6

0.7

0.8

0.9

1.0
vr

Figure 3:P (α < β|vc < f(n)) by r12 andr13
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so let us turn to simulations to pursue this point. The
simulations randomly sampled 20 replicates 10,000 times
from a trivariate standard normal distribution and con-
verted them to a vector of ranks(x1, x2, x3), wherex1

is the outcome rank,x2 is the knowledge cue rank, and
x3 is the order of learning rank. The pairwise correla-
tions were set to all possible combinations of{.3, .5, .7},
plus an additional 9 combinations withr13 (the correla-
tion between outcome and order of learning ranks) set to
0, resulting in 36 runs.

The results are summarized in Figure 3, which displays
the proportion of runs whereα < β out of those in which
vc < f(n), i.e.,P (α < β|vc < f(n)). This proportion
ranges from about .05 to .43, so this co-occurrence is not
uncommon for mid-range cue validities. Moreover, it is
apparent thatr13, the correlation between outcome and
order of learning ranks, drivesP (α < β|vc < f(n)).
Lower r13 predicts higherP (α < β|vc < f(n)), with
the maximum achieved whenr13 = 0. In contrast,r12
(the correlation between outcome and the knowledge cue
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Figure 4:P (vc < f(n)) by r12 andr13
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rank) andr23 (the correlation between the order of learn-
ing and the knowledge cue rank) have negligible effects.
Recall thatr13 is a proxy for the cue validity of order
of learning which in turn determines the recognition cue
validity for each value ofn. Therefore, this finding tells
us that the co-occurrence of the LIME andα < β is in-
versely related to the order of learning validity.

3 A New General Condition for the
“full experience” LIME

3.1 Perfect Recognition

We now return to examining the LIME itself. The sim-
ulations described earlier may be used to gain intuition
about how the LIME is influenced by the cue validities
of the knowledge cue and the order of learning, with a
“chance” benchmark in which the order of learning is
uncorrelated with outcome rank. Figure 4 shows the re-
sultingP (vc < f(n)), the proportion of trials in which
the LIME occurred, as a function ofr12 andr13. As we
might expect, higherr13 predicts a higher probability of
the LIME, and for constantr13 a lowerr12 predicts more
frequent LIMEs. This latter trend reflects the fact that al-
though it is possible for the LIME to occur whenα < β,
it is easier for it to occur when the opposite is true. Asr12
declines it is more likely thatα > β and therefore also
more likely that the LIME will occur.

It should be clear that the LIME can occur “by chance,”
in the sense that an arbitrary order of learning can some-
times produce the LIME. In the Table 1 example, if item 8
or item 10 is the last item to be learned then just before it
is learnedf(n) will be .733, both instances of the LIME
(recall thatvc = .667). However, if item 3 or item 6 is the

last to be learned thenf(n) will be .644 or .667, neither
of which exceedsvc. So, conditional on all items but 3,
6, 8, and 10 having been learned, if each of the remaining
four is equally likely to be the last learned then in the last
learning stage the probability of the LIME is .5.

Now in Figure 4 note that whenr13 = 0, P (vc <
f(n)) does not fall to a negligible level. In fact, for
r12 = .3 the probability of the LIME is around .15 to
.20. It can be driven higher still by allowing a negative
correlation between the order of learning and the knowl-
edge cue rank. Forr12 = .3 andr23 = −.5, for instance,
the simulation resulted inP (vc < f(n)) = .256. At least
some occurrences of the LIME are an artifact of random
variability in recognition cue validity despite the absence
of order-of-learning validity. Therefore, in evaluating the
accuracy of the recognition heuristic, it seems advisable
to benchmark any empirical findings against appropri-
ate “null” models that track the occurrence of the LIME
when the order-of-learning validity is zero.

Is there another general condition restricting when the
LIME can occur? This condition can be stated simply but
it requires a small addition to the machinery that has been
built up so far. Denote byvcnr the probability of choos-
ing correctly between recognized and unrecognized items
by using the knowledge cue (rather than the recognition
cue), and letvcnn be the probability of correctly choosing
between two unrecognized items by using the knowledge
cue. Obviously these are “counterfactual” constructions
in the sense that the partially ignorant agent cannot use
the knowledge cue to choose between items unless both
are recognized. Nevertheless,vcnr andvcnn permit us to
decomposevc into its three components:

2vcnrn(N − n) + vcnnQr + vcrn(n− 1)

N(N − 1)
,

where againQr = (N − n)(N − n − 1). From this
expression and equation (1) the LIME condition may be
written as

vcnr2n+ vcnn(N − n− 1)

< vr2n+ (N − n− 1)/2.
(6)

This version of the LIME reveals that ifvcnn ≥ 1/2 then
the LIME occurs only if

vcnr < vr. (7)

Recall that in the Goldstein-Gigerenzer notationvr = α.
So this really is where the recognition cue’s validity must
exceed that of the knowledge cue, namely in choices
between a recognized item and an unrecognized item.
Schooler and Hertwig’s (2005) implementation of the
recognition heuristic in the ACT-R framework uses no
knowledge cue and instead assumes guessing when both
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objects are recognized. That is, they explicitly restrict
vcr andvcnn to 0.5 and thus implicitlyvcnr also is 0.5.
Consequently their simulation obtains a LIME simply by
recognition performing above chance level. Conversely,
if vcnr ≥ vr the LIME occurs only ifvcnn < 1/2. Fi-
nally, it should be evident that becausevcr (i.e., β) is
common to bothf(n) andvc, the occurrence ofα > β
without the LIME may be quite frequent. Indeed, it is
no surprise that Pachur and Biele (2007) failed to find a
LIME even when theα > β condition was satisfied.

Clearly the order in which items become recognized
is crucial in determining whether the LIME will occur.
If this order perfectly matches the order of the outcome
ranks then of course at each stepvr = 1 and the LIME
is maximally likely. On the other hand, if pairs of items
become recognized whose ranks are equally above and
below the median rank thenvr = .5 and the LIME is
unlikely to occur. The order in which items become rec-
ognized acts like another cue with the order of learning
determining the ranks of this cue.

Accordingly, letvo denote the validity of the order in
which items become recognized. At the point wheren
items have become recognized we may decomposevo in
the same way asvc using an obvious notation, so that we
write vo as

2vrn(N − n) + vonnQr + vorn(n− 1)

N(N − 1)
.

Restrictions onvo impose further restrictions on the
conditions under which the LIME occurs. Ifvo ≤ vc,
thenvcnr < vr only if γc.r > γo.r, whereγc.r is the par-
tial gamma coefficient for the knowledge cue with recog-
nition partialed out andγo.r is the corresponding partial
gamma for the order of learning (see Corollary 1 in the
Appendix). It may seem counter-intuitive that the LIME
could occur even when the order of learning validity is
lower than that of the knowledge cue andvcnn ≥ 1/2,
but that is unmistakably what this result says. Nor is it
difficult to construct such examples.

Table 2 displays one such example with 10 items of
which 5 are recognized,vc = .778 < f(n) = .8 and
therefore the LIME, and yetvcnn = .6 andvo = .667 <
vc. The LIME is achievable here becausevcnr = .8 <
vr = .88 , and this inequality in turn is achievable be-
causeγc.r = .486 > γo.r = .371.

3.2 Imperfect Recognition

Pleskac (2007) extends the study of the recognition
heuristic by introducing a condition that recognition is
imperfect, i.e., people do not always recognize the items
they have experienced. Thus, instead of just recognized
and unrecognized items, there are hits (items correctly

Table 2: LIME whenvo ≤ vc

Outcome Alternative Recognition

Rank Recognition Cue Order

1 1 1 3

2 1 2 2

3 0 4 10

4 1 6 1

5 1 5 5

6 1 9 4

7 0 8 9

8 0 3 7

9 0 10 6

10 0 7 8

5 55 55

Table 3: Probabilities of correct choices forf(n)

H M T F

H B

M 1/2 1/2

T A 1/2 1/2

F G∗ 1−A 1/2 1/2

*G = zA+ (1− z)/2

identified as having been experienced), misses (items in-
correctly identified as not experienced), true rejections
(items correctly identified as not experienced), and false
alarms (items incorrectly identified as experienced). The
result is 10 distinct pairs of items, each with their own
decision rule (Pleskac, 2007, Table 1).

Pleskac assumes that the cue validity of experience,
denoted byA, is independent of recognition ability, so
he replacesα with A. Likewise, he replacesβ with B,
the validity of the knowledge cue among the experienced
(instead of the recognized) items. I have summarized the
components off(n) in his scheme in Table 3, using the
abbreviations H for hits, M for misses, T for true rejec-
tions, and F for false alarms.

For (M,M), (T,M), and (T,T) pairs a decision maker
must guess, so the probability of a correct choice from
these three pairs is1/2. Pleskac (2007: 384) argues that
the probabilities of correct choices from the (H,M) and
(F,T) pairs also must be1/2. By definition, the proba-
bility of a correct choice from the (T,H) pairs isA, the
probability of a correct choice from the (F,M) pairs is
1 − A, and the probability of a correct choice from the
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(H,H) pairs isB.
As Pleskac (2007: 384-5) points out, choices involv-

ing the (F,H) pairs benefit partly from experience. Rather
than repeating his argument here, suffice it to say that the
proportion of correct choices for these pairs iszA+(1−
z)/2, wherez is the proportion of experienced items that
would be chosen over the false-alarm items on the basis
of some choice heuristic. In Pleskac’s setup the knowl-
edge cues are binary (either positive or negative) and his
version of this heuristic is that the experienced item must
have at least one positive cue value. For the time being,
we will leave this heuristic unspecified.

Pleskac claims that the LIME can occur only ifA >
B. In a recent paper Katsikopoulos (2010) disproves this
claim, showing that the LIME can co-occur withA <
B even allowing Gigerenzer and Goldstein’s assumption.
We can extend the argument from section 2 to specify
when the LIME can co-occur withA < B. Denoting the
hit-rate byh and the false-alarm rate byf , Theorem 2 in
the Appendix provides the following characterization of
the LIME under imperfect recognition:

γc <
2γA (h−f+zhf)ne(N−ne) + γBhne(hne−1)

N (N − 1)
,

(8)
wherene is the number of items experienced, andγA and
γB have the obvious meanings. Whenh = 1 andf = 0
(i.e., under perfect recognition) this equation reduces to
equation (3) withne = n, γA = γr, andγB = γcr.
Theorem 2 proves that the LIME can co-occur withA <
B iff

γcN (N − 1)− γBhne(hne − 1)

2ne(N − ne)
<

γA (h− f + zhf) < γB (h− f + zhf) . (9)

Whenh = 1 andf = 0 this equation reduces to equation
(4) with the same substitutions as above.

Now, following Katsikopoulos (2010), let
αe = (A− 1/2)(h− f + zhf) + 1/2, and
βe = (B − 1/2)h2 + 1/2.
Thus,αe andβe are analogous toα andβ under imperfect
recognition. Theorem 2 also shows that the LIME can
co-occur withαe < βe iff the γB(h − f + zhf) term
in equation (9) is replaced withγBh2. This is a more
severe requirement than equation (9), so if the LIME co-
occurs withαe < βe it also co-occurs withA < B but
the converse does not hold.

A higher value ofh and a lower value off make the
inequalities in equations (8) and (9) easier to satisfy, and
therefore the LIME more likely to occur. Theh − f +
zhf term is not positive whenf ≥ h/(1− hz), in which
case the inequalities cannot hold ifγc, γB andγA all are
positive. Katsikopoulos (2010) presents a new version of
the LIME whenf ≥ h/(1− hz), wherebyf(n) declines
asn increases untiln becomes sufficiently large. We will

Table 4: Probabilities of correct choices for the knowl-
edge cue

H M T F

H B

M B B

T B1 B1 B2

F B1 B1 B2 B2

not consider this condition here; a full investigation of the
LIME under imperfect recognition is beyond our scope.

Clearly a higher value ofz also increases the likeli-
hood of the LIME. Thus, the heuristic drivingz when
the knowledge cue is ranked instead of binary should be
of interest to researchers in this area. A simple heuristic
would be to choose the experienced item over the false-
alarm item if the knowledge cue rank of the experienced
item is better than some benchmark known to the deci-
sion maker. On the other hand, a rational decision maker
who believes thatA > 1/2 should setz = 1.

What form does the general condition for the LIME in
equation (7) take under imperfect recognition? To deter-
mine this, we begin by assuming that the validity of the
knowledge cue differs only across the same three subsets
of item pairs as in perfect recognition. This assumption
is simply the counterpart of the foregoing assumption re-
garding the experience cue validity,A, namely that these
cue validities are conditionally independent of the agent’s
recognition ability. Thus, in Table 4 the knowledge cue
validity is B for choices between pairs of experienced
items,B1 for choices where one item is experienced and
the other not, andB2 when both items are not experi-
enced.

Corollary 2 in the Appendix shows that if the appropri-
ately weighted sum ofB2 andB is 1/2 or greater, then
the general condition in equation (7) generalizes to the
inequality

γB1
< γA (h− f + zhf) . (10)

Whenh = 1 andf = 0 this inequality reduces to equa-
tion (7) withγA = γr andγB1

= γcnr. As before, higher
values ofh andz and a lower value off make this in-
equality easier to satisfy, and therefore the LIME more
likely to occur.

We now will relax the assumption that the experience
and recognition are conditionally independent, by allow-
ing the probability of a correct choice between (H,M)
pairs to differ from 1/2. This probability is denoted by
Q in Table 5. The motivation for relaxing this assump-
tion is to consider the influence that memory effects such
as primary or recency might have on the LIME. If the
higher-ranked experienced items are more likely to be
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Table 5: Probabilities of correct choices without the in-
dependence assumption

H M T F

H B

M Q 1/2

T A 1/2 1/2

F G∗ 1− qA 1/2 1/2

*G = zA+ (1− z)/2

recognized thenQ > 1/2. If the earlier-experienced
items are more highly ranked then a primacy effect will
result inQ > 1/2, whereas a recency effect would yield
Q < 1/2.

Relaxing the conditional independence assumption
also affects the probability of a correct choice between
(F,M) pairs because the knowledge cue validity for the
misses is no longerA. Instead, it isqA, where ifQ > 1/2
then0 < q < 1 whereas ifQ < 1/2, q > 1. Corollary 3
in the Appendix shows that the LIME condition in equa-
tion (10) generalizes to

γB1
(N − ne) + 2γB

(

h− h2
)

ne <

γA (h− f + zhf + f (1− h) (1− q)) (N − ne)+

f (1− h) (1− q) (N − ne) + 2γQ
(

h− h2
)

ne, (11)

whereγQ = 2Q−1. For smallne this inequality is dom-
inated by the comparison betweenγA andγB1

, whereas
largene it is dominated byγQ versusγB . Here, the gen-
eralized condition for the LIME no longer holds. It is
possible forγQ to exceedγB sufficiently to enable the
LIME to occur when equation (10) is violated.

4 Learning and forgetting

In order for a local LIME to occur,f(n) must either rise
and then fall or vice-versa. That is, there must be a lo-
cal “more-is-more” effect (or MIME) followed by a local
LIME or vice-versa as items are learned or the reverse
sequence if items are being forgotten. There is a corre-
sponding local LIME and MIME pair if we consider re-
moving or adding an item to the collection of items, but
we will not deal with that case here. We shall also con-
sider only the case of perfect recognition.

Learning and forgetting items will generally change
f(n) but notvc. The conditions under which the direction
of change inf(n) can switch sign are of interest, because
that is the event that signals a local MIME followed by
a local LIME or vice-versa. We will focus on the case
where one more item is learned. The results for the case

where one item is forgotten differ only in minor respects
that are not of interest here.

Let vr1 denote the new probability of correct choices
between a recognized and unrecognized pair using the
recognition heuristic when one more item has been
learned. Likewise, letvcnr1, vcnn1, andvcr1 denote the
new probabilities of correct choices using the knowledge
cue between a recognized and unrecognized pair, two un-
recognized items, and two recognized items respectively.
Each of these probabilities will have their corresponding
γ parameters as before. Now, consider the change in
the proportion of correct choices as one more item is
learned:f(n) − f(n + 1). Theorem 3 in the Appendix
shows thatf(n) − f(n + 1) = 0 for n < N − 1 under
the following conditions:

δcr < 0 iff δr > δr0 and

δcr ≥ 0 iff δr ≤ δr0,
(12)

whereδr = γr − γr1, δcr = γcr − γcr1, and

δr0 =
nγcr + (N − 2n− 1)γr
(N − n− 1)(n+ 1)

.

Whenn = N − 1, f(n)− f(n+ 1) = 0 iff

δcr =
2(γcr − γr)

N
.

For n < (N − 1)/2, δr0 > 0 so equation 12 implies
that if δr < 0 thenδcr > 0. Moreover, even for inter-
mediate values ofn ≥ (N − 1)/2 it turns out thatδr0
is close to 0. Thus, generally equation (12) suggests that
in order for a local MIME-LIME sequence to occur,δcr
andδr will tend to have opposite signs so that an increase
in the recognition validity will be offset by a decrease in
the knowledge-cue validity among recognized items and
vice-versa.

Now becausevc does not change, we also must
ascertain the conditions for it to remain constant as one
more item is learned. Theorem 4 shows thatvc remains
constant forn such thatn < N − 1 under the following
conditions:

δcr < 0 if δcnn > 0 and δcnr = δcnr0,

δcr ≥ 0 if δcnn ≤ 0 and δcnr = δcnr0,

δcr < 0 if δcnr > δcnr0 and δcnn = 0, and

δcr ≥ 0 if δcnr ≤ δcnr0 and δcnn = 0,
(13)

whereδcnr = γcnr − γcnr1, δcnn = γcnn − γcnn1, and

δcnr0 =
nγcr + (N − 2n− 1)γcnr − γcnn1(N − n− 1)

(N − n− 1)(n+ 1)
.

Whenn = N − 1, vc remains constant when one more
item is learned iff

δcr =
2(γcr − γcnr)

N
.
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Equation (13) suggests a quasi-hydraulic relation be-
tweenδcr and bothδcnr andδcnn that accords with the
commonsense supposition that as an additional item is
learned any change invcr will be compensated by a net
opposite change in the weighted sum ofvcnr andvcnn
due to the fact thatvc does not change. For intermediate
values ofn, it turns out thatδcnr0 is close to 0. Con-
sequently,δcnn tends to have a larger effect onδcr than
δcnr0 does.

5 Discussion

The main results presented in this paper may be summa-
rized as follows.

1. When we relax the assumption thatα andβ do not
change asn varies, the LIME does not depend on
the condition thatα > β. This condition can oc-
cur without the LIME. Likewise, the LIME can co-
occur withα < β and, indeed, withα < vc or even
when the order of learning validity is less than the
knowledge cue validity (vo < vc). Moreover, these
co-occurrences can arise under conditions that ar-
guably are neither unusual nor bizarre. The main
requirement is that the recognition heuristic mod-
erates the knowledge cue validity so as to increase
it within the subset of recognized items. Simula-
tions revealed that the higher the order of learning
validity, the less likely the LIME is to co-occur with
α < β. An analogous result was obtained under im-
perfect recognition, thereby extending Katsikopou-
los’ (2010) finding that the LIME can co-occur with
A < B to include co-occurrence withαe < βe.

2. In the new general condition for the LIME, equa-
tion (6) implies that ifvcnn > 1/2 then the LIME
can occur only ifvcnr < vr, i.e., if the recogni-
tion cue validity exceeds the knowledge cue validity
within the set of recognized items. This new condi-
tion for the LIME was generalized to deal with im-
perfect recognition, with the additional finding that
a higher hit-rate and lower false-alarm rate increase
the likelihood of the LIME.

3. Under imperfect recognition when the assumption
of conditional independence between recognition
and experience is relaxed,vcnr < vr is no longer re-
quired because the LIME can occur if the knowledge
cue validity for (H,M) pairs sufficiently exceeds the
knowledge cue validity for (H,H) pairs. The latter
comparison carries greater weight as more items are
learned and/or as hit-rate increases.

4. If the LIME occurs then at some point as more items
are learned or forgotten there must be a local MIME

followed by a local LIME, or vice-versa. Equa-
tion (12) suggests (but does not strictly imply) that
when the local MIME-local LIME sequence occurs,
the change invcr will be negatively associated with
change invr.

The results generalize to a binary knowledge cue or an or-
dinal cue with tied ranks (here I have assumed an ordinal
knowledge cue with no tied ranks), and also to a weighted
sum of cues. Equivalent examples to those from Table
1 onward using a binary knowledge cue are available
from the author on request. Tied ranks sever the analogy
with theγ coefficient of association but do not invalidate
the results. When the knowledge cue is used to make a
choice, I assume guessing is used if the two items are tied
on the knowledge cue. LettingTc denote the number of
tied pairs,vc = (Cc+Tc/2)/(Cc+Dc+Tc) and an analo-
gous formula holds forvcr, i.e.,β. Now,2vc−1 no longer
is γc but instead equals Somers’ (1962)dxy, an asym-
metric measure of ordinal association (Somers’ measure
is related to Kendall’sτb by dxydyx = τ2b ). Thus, all re-
sults in this paper expressed in terms of validities remain
as they are, and dealing with ties simply means that all
results expressed in terms ofγ coefficients have Somers’
dxy substituted forγ.

The findings presented here apply to any binary char-
acteristic whose possession by an item is not fixed but can
vary either through assignment by a perceiver or environ-
mental changes. Not only does this include the recogni-
tion cue, but any other binary status cue (e.g., member-
ship in a group, organization or club that carries with it
relevant knowledge cues and without which those cues
are absent). These findings describe how effective status
cues earn their keep.

The results also point toward four programmatic rec-
ommendations regarding future work on the recognition
heuristic. First, despite the demonstrations via analytical
results and simulations thatα > β is not required for the
LIME, it is not known how oftenα < β and the LIME
co-occur in real environments, how oftenα > β occurs
without the LIME, or whether these co-occurrences de-
pend onn and/orN . All three merit further investigation.

Second, the results highlight the importance of the or-
der in which items are learned. No account of the recog-
nition heuristic can be complete without an understanding
of the effects of the order of learning, and therefore those
aspects of reputational systems and learners determining
that order. Population-level models of the recognition
heuristic and predictions of its accuracy should incorpo-
rate at least an expected order of learning, and preferably
an appropriate distributional model of that order.

The implications of these results are compatible with
certain other criticisms of empirical research on the
recognition heuristic. Dougherty et al. (2008) raise the
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problem of determining the reference class and ecology
within which cue validities are evaluated, and Gigeren-
zer, Hoffrage and Goldstein’s (2008) response refers to
a general confusion between cue validity and ecological
validity. The main point is that inferring a LIME via
between-agent comparisons requires agents in the same
ecology (e.g., German citizens reading German news-
papers should not be compared with American citizens
reading American newspapers) who are making choices
within the same reference class of objects (e.g.,f(n) for
American cities cannot sensibly be compared withf(n)

for German cities).

The results in this paper imply thatf(n), α, andβ

for one set ofn recognized objects in a particular ecol-
ogy and reference class will not necessarily be identical
for a different set ofn recognized objects, even for the
same agent. Moreover, to establish that a LIME has oc-
curred by comparing between agents requires the ecologi-
cal validity of the knowledge cues to be identical for those
agents. Thus, unconfounded between-agent comparisons
(agent 1 knowsn1 objects and agent 2 knowsn2 objects,
wheren1 > n2) require not only that both agents be lo-
cated in the same ecology and reference class, but also
vc1 = vc2, preferably because both agents use the same
knowledge cues in the same way, and then2 objects are a
subset of then1 objects. Of course, this is unlikely to hold
for agents in real environments. For example, Dougherty
et al. (2008: 208) suggest that as agents learn more ob-
jects they may also learn more effective cues.

The current empirical literature on the recognition
heuristic generally is flawed or subject to influences that
researchers have not taken into account. For example,
Serwe and Frings (2006) compare the predictive accu-
racy of aggregated rankings of Wimbledon tennis play-
ers based on mere recognition with the ATP rankings of
these players, so they are not actually evaluating the per-
formance of the recognition heuristic in conjunction with
knowledge and guessing. On the other hand, Pohl (2006)
and Pachur and Biele (2007) use methods that do this,
but the remaining potential confounds in their studies are,
first, that the knowledge cue validityvc will be unique for
each individual and therefore will have an unknown effect
on each person’sβ, and second, the sets of objects recog-
nized by subjects whosen is small may not be subsets
of the sets of objects recognized by subjects whosen is
large.

Within-agent (agent 1 = agent 2) comparisons satisfy
nearly all of the aforementioned requirements if the col-
lection of objects remains stable for the duration of the
comparisons. Between-agent comparisons or compar-
isons of meanf(n) for different values ofn are vul-

nerable to confounds except in very restricted or con-
trolled ecologies. A clear recommendation for studying
the LIME in its “pure” form with effects due solely ton
is tracking agents over time as they learn or forget objects
in environments with stable collections of objects.

The order of learning is determined not only by repu-
tational systems but also by learners. The effectiveness
of the recognition heuristic therefore hinges not only on
aspects of the social environment but also how individ-
uals interact with and learn from that environment, and
retain what they have learned. Pleskac (2007) and Kat-
sikopoulos (2010) have made inroads on this topic. Both
Katsikopoulos’ paper and the results at the end of section
4 suggest possible joint effects of memory processes (the
example used here is primacy versus recency effects) and
the reputational system on the performance of the recog-
nition heuristic. Empirical studies would benefit from
taking on a more dynamic approach than most recogni-
tion heuristic studies, studying how people learn and re-
member (or forget) about a collection of items.

To date, agent learning or forgetting in regard to the
recognition heuristic has been investigated in simulations
(e.g., Goldstein & Gigerenzer 1999 and Dougherty et al.
2008) but not empirically. Dougherty et al.’s methods
come close to satisfying the requirements for investigat-
ing the LIME that have been derived from the results pre-
sented here. However, like others in this domain, they
have erroneously assumed thatβ remains constant asn
varies and is the same for different collections ofn rec-
ognized items.

A third direction for future research is the extension of
the issues raised in this paper to group inferences. Reimer
and Katsikopoulos (2004) present several analytical re-
sults characterizing the LIME under various combination
rules such as majority-rule. They assume thatα andβ
do not change asn varies, so their findings merit further
investigation whereby this assumption is relaxed.

Fourth, collections of items and their ranks on out-
comes often are unstable. Ranks can change, of course,
because items can improve or decline, even if only
through stochastic artifacts such as regression toward the
mean. Perhaps more importantly, items may drop out or
new ones appear. The disappearance of old items and ap-
pearance of novel ones will affect both the order of recog-
nition validity and knowledge cue validity, and therefore
the performance of the recognition heuristic. These ef-
fects were hinted at but not dealt with here. Understand-
ing them will require the same reorientations described
above, namely greater attention to the order in which
items are learned (or forgotten), to the joint effects of
learner and environment characteristics, and to dynamics



Judgment and Decision Making, Vol. 5, No. 4, July 2010 When less is more 240

in general.
Finally, a few remarks are in order on the limitations

and utility of formal analysis as utilized in this paper.
As in any mathematization, some idealizations and sim-
plifications have been made. Chief among these is the
assumption that the properties of the knowledge cue do
not change as more items are learned or forgotten. As
Dougherty et al. (2008) observe, it is plausible that this
assumption may not hold. On the other hand, the setup
in this paper avoids simplifications in earlier analyses
that have misguided researchers, most importantly the
assumption thatα andβ are invariant under changes in
n or for different collections ofn recognized items. I
would argue that this new analysis does not commit what
Lewandowsky (1993) termed “irrelevant specification.”

Regarding utility, the approach in this paper does what
formal analyses and models should (Fum, Missier, &
Stocco, 2007). First, it highlights determinants of how
the recognition heuristic performs that have been over-
looked. It does this by deriving the influence of the or-
der of learning and by introducing “counterfactual” con-
structs such asvcr, neither of which are obvious in ver-
bal descriptions of the recognition heuristic. Second, it
provides guidelines for researchers concerning methods,
novel phenomena to investigate, and when the LIME is
possible and when it is not.
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Appendix

Theorem 1: when equation (4) or (5) is satisfied ifn < N

then it is always the case thatvc < vcr.

Proof: We begin with equation (4). First, we setn = kN

and re-express the left-hand inequality in equation (4) as

γcN(N − 1)− γcrkN(kN − 1)

2kN(N − kN)
= qγr,

where0 < q < 1. Solving fork yields two roots, the
relevant one of which is

(γcr − 2Nqγr+
√

4(N − 1)Nγc (γcr − 2qγr) + (γcr − 2Nqγr) 2)/

(2N (γcr − 2qγr))

Now, we setγr = γ, γc = ǫγ, andγcr = δγ. We also set
the restrictions thatδ > 1, ǫ > 0, and0 < q < 1. Setting
k < 1, theγ terms cancel out and we get

δ − 2Nq +
√

(δ − 2Nq)2 + 4(N − 1)N(δ − 2q)ǫ

2N(δ − 2q)
< 1.

There are two cases:2q < δ and2q > δ. Assuming first
that2q < δ, the above inequality may be rearranged as:

(δ − 2Nq)2 + 4(N − 1)N(δ − 2q)ǫ

< (2N(δ − 2q)− (δ − 2Nq))2.

Expanding the right-hand side and cancelling common
terms on both sides yields

ǫ < δ.

Now assuming that2q > δ, the first inequality may be
rearranged as:

(2Nq − δ)2 − 4(N − 1)N(2q − δ)ǫ

> ((2Nq − δ)− 2N(2q − δ))2.

A similar algebraic argument then leads toǫ < δ. This
requirement immediately impliesvc < vcr.

Equation (5) may be rearranged in a similar fashion to
solve fork, which yields an identical solution with the
additional provisos thatq < δ and0 < ǫ < 1. From
the fact thatǫ appears only in the numerator of the root
for k tells us that this additional restriction constrainsk

to lower values than those possible for the co-occurrence
of the LIME andα < β, ceteris paribus.

�

Corollary 1: If vo ≤ vc, thenvcnr < vr only if γc.r >

γo.r, whereγc.r is the partial gamma coefficient for the
knowledge cue with recognition partialed out andγo.r is
the corresponding partial gamma for the order of learn-
ing.

Proof: From the definitions that

vo =
2vrn(N − n) + vonnQr + vorn(n− 1)

N(N − 1)

and

vc =
2vcnrn(N − n) + vcnnQr + vcrn(n− 1)

N(N − 1)

it is clear that ifvo ≤ vc, thenvcnr < vr only if

vcnnQr + vcrn(n− 1) > vonnQr + vorn(n− 1).

From the relationship between validities and gamma co-
efficients, this inequality implies

γcnnQr + γcrn(n− 1) > γonnQr + γorn(n− 1).

From the definition of a partial gamma coefficient it fol-
lows that

γc.r =
γcnnQr + γcrn(n− 1)

Qr + n(n− 1)

and

γo.r =
γonnQr + γorn(n− 1)

Qr + n(n− 1)
.

The preceding inequality therefore may be written as

γc.r > γo.r.

�

Theorem 2: the LIME can co-occur withA < B iff

γcN (N − 1)− γBhne(hne − 1)

2ne(N − ne)

< γA (h− f + zhf) < γB (h− f + zhf) .

The LIME also can co-occur withαe < βe iff the γB(h−

f + zhf) term in equation (9) is replaced withγBh2. If
αe < βe thenA < B but the converse does not hold.

Proof: Constructingf(n) from Pleskac’s Table 1 ele-
ments and using the substitutions
A = (γA + 1) /2 and
B = (γB + 1) /2,
we may write

f(n) =
γA(h−f+zhf)ne(N−ne)+γBhne(hne−1)/2

N(N − 1)
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+1/2.

Fromvc = (γc + 1) /2

we havevc < f(n) iff γc/2 < f(n) − 1/2. Combining
A < B with this latter inequality yields

γcN (N − 1)− γBhne(hne − 1)

2ne(N − ne)

< γA (h− f + zhf) < γB (h− f + zhf) .

Now, let
αe = (A− 1/2)(h− f + zhf) + 1/2, and
βe = (B − 1/2)h2 + 1/2.
Then a straightforward algebraic rearrangement ofαe <

βe yields
γA(h− f + zhf) < γBh

2.
The claim that ifαe < βe thenA < B follows from the
observation that
h− f + zhf ≤ h2.
This observation holds because its opposite implies that
h(1− h) < f(zh− 1),
which is impossible because the left-hand term is non-
negative whereas the right-hand term is non-positive.

�

Corollary 2: If

B2(N − ne)(N − ne − 1) +Bne(ne − 1)(1− h)

≥ ((N − ne)(N − ne − 1) + ne(ne − 1)(1− h)) /2,

thenvc < f(n) iff

γB1
< γA (h− f + zhf) .

Proof: Under the inequality specified above and from
Table 3,vc < f(n) iff

Ah(1− f) + (1−A)(1− h)f

+ (zA+ (1− z)/2)hf + (1− h)(1− f)/2

> B1 (h(1− f) + f(1− h) + hf + (1− h)(1− f)) ,

which may be rearranged to give

γB1
< γA (h− f + zhf) .

�

Corollary 3: If

B2(N − ne)(N − ne − 1) +Bne(ne − 1)(1− h)

≥ ((N − ne)(N − ne − 1)

+ (1− h)ne((1− h)ne − 1))/2

+ Qn2
eh(1− h),

thenvc < f(n) iff

γB1
(N − ne) + 2γB

(

h− h2
)

ne

< γA (h− f + zhf + f (1− h) (1− q)) (N − ne)

+f (1− h) (1− q) (N − ne) + 2γQ
(

h− h2
)

ne,

whereγQ = 2Q− 1.

Proof: Constructingf(n) from Table 5 and using the
substitutions
A = (γA + 1) /2,
B = (γB + 1) /2, and
Q = (γQ + 1) /2,
we may write

f(n) = (γA(h− qf + (q + z − 1)hf)ne(N − ne)+

γBhne(hne − 1)/2 + γQn
2
e(h− h2))/(N(N − 1))

+1/2.

Fromvc = (γc + 1) /2 we get the result immediately.

�

Theorem 3: Forn ≤ N − 1, f(n)− f(n+ 1) = 0 under
the following conditions.
Forn = N − 1,

δcr =
2(γcr − γr)

N
.

Forn < N − 1,

δcr =
2(nγcr + b1γr − b2δr)

n(n+ 1)
,

where
b1 = N − 2n− 1, b2 = (n+ 1)(N − n− 1),
δcr = γcr − γcr1 andδr = γr − γr1.
Moreover,
δcr < 0 iff δr > δr0 and
δcr ≥ 0 iff δr ≤ δr0, where

δr0 =
nγcr + (N − 2n− 1)γr
(N − n− 1)(n+ 1)

.

Proof: f(n)−f(n+1) = 0 can be written as a quadratic
in n of the form:

R1n
2 −R2n+R3 = 0,

where
R1 = δcr − 2δr,
R2 = δcr − 2(N − 2)δr − 2γcr + 4γr, and
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R3 = 2(N − 1)(δr − γr). This equation is linear inδcr,
and a simple algebraic rearrangement yields

δcr =
2(nγcr + b1γr − b2δr)

n(n+ 1)
,

with b1 andb2 defined as above.
Whenn = N − 1 this equation reduces to

δcr =
2(γcr − γr)

N
.

Note that the above equation is negative inδr. Whenn <

N − 1 settingδcr = 0 and solving forδr yields

δr =
nγcr + (N − 2n− 1)γr
(N − n− 1)(n+ 1)

= δr0.

Thus, forn < N − 1,
δcr < 0 iff δr > δr0 and
δcr ≥ 0 iff δr ≤ δr0.

�

Theorem 4: Forn ≤ N − 1, the knowledge cue validity
remains constant as an additional item is learned, i.e.,
vc,n − vc,n+1 = 0 (wherevc,n denotes the knowledge
cue validity when the number of recognized items isn),
under the following conditions.
Forn = N − 1,

δcr =
2(γcr − γcnr)

N
.

Forn < N − 1,

δcr =
2nγcr + d1γcnr − d2γcnn1 − d3δcnr − d4δcnn

n(n+ 1)
,

where
d1 = N − 2n− 1,
d2 = N − n− 1,
d3 = 2(n+ 1)(N − n− 1),
d4 = 2 +N2 + 3n+ n2 −N(2n+ 3),
δcnr = γcnr − γcnr1 andδcnn = γcnn − γcnn1.
Moreover,
δcr < 0 if δcnn > 0 andδcnr = δcnr0,
δcr ≥ 0 if δcnn ≤ 0 andδcnr = δcnr0,
δcr < 0 if δcnr > δcnr0 andδcnn = 0, and
δcr ≥ 0 if δcnr ≤ δcnr0 andδcnn = 0, where

δcnr0 =
nγcr + (N − 2n− 1)γcnr − γcnn1(N − n− 1)

(N − n− 1)(n+ 1)
.

Proof: This proof has the same form as in Theorem 3.
vcn − vcn+1 = 0 can be written as a quadratic inn of the
form:

S1n
2 − S2n+ S3 = 0,

where
S1 = δcr − δcnn − 2δcnr,
S2 = δcr − 2N(δcnn− δcnr)+4(γcnr − δcnr)− 2(γcr +

γcnn), and
S3 = (N − 1)(δcnr − γcnr + (N − 1)δcnn + 2γcnn).
This equation is linear inδcr, and a simple algebraic re-
arrangement yields

δcr =
2nγcr + d1γcnr − d2γcnn1 − d3δcnr − d4δcnn

n(n+ 1)
,

with d1, d2, d3, andd4 defined as above.
Whenn = N − 1 this equation reduces to

δcr =
2(γcr − γcnr)

N
.

Note that the above equation is negative inδcnr and in
δcnn. Whenn < N − 1 settingδcr = 0 and vc,n −

vc,n+1 = 0, and solving these equations forδcnn and
δcnr, yieldsδcnn = 0 and

δcnr =
nγcr + (N − 2n− 1)γcnr − γcnn1(N − n− 1)

(N − n− 1)(n+ 1)

= δcnr0.

Thus, forn < N − 1,we obtain the inequalities in Theo-
rem 4. �


