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General Procedures 

This document supplements the paper by Smithson and Verkuilen (2005) on beta 

regression, and focuses on maximum likelihood estimation procedures in several statistical 

packages. Maximizing the likelihood function can be achieved using a Newton-Raphson or a 

quasi-Newton method. Ferrari and Cribari-Neto (2004) use Fisher scoring. Buckley (2002) 

has used MCMC estimation in winBUGS, which provides a Bayesian posterior density. 

Buckley (2002) also provided Stata code and Paolino (2001) provided Gauss code, both of 

which compute maximum likelihood estimates. We have estimated beta regressions using R, 

SPlus, SAS, SPSS, Mathematica, and winBUGs. Syntax and/or script files for all of these 

packages are freely available on this site.  

Different packages require more or less information from the user. SAS, for instance, only 

requires the likelihood and analytically computes the derivatives for Newton methods, 

whereas Mathematica’s Newton-Raphson routine requires the user to supply expressions for 

the derivatives. The major difference between Newton-Raphson and quasi-Newton is in the 

number of function evaluations per iteration (more for Newton-Raphson) and the number of 

iterations necessary (more for quasi-Newton). The domain of convergence for different 

algorithms, and hence importance of good starting values, will differ across algorithms as 

well. The trust region Newton method implemented in SAS seems to be particularly stable on 

hard problems and we recommend its use when convergence might be a problem. In general, 

speed of execution for ML estimation is proportional to N + p2, where N is the sample size 

and p is the number of parameters. We have never observed a well-specified model given 
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good starting values taking longer than a few seconds to converge, even on a fairly modest 

laptop.  

If a Newton or quasi-Newton method is used, asymptotic standard errors usually are 

estimated from the inverse of the final Hessian matrix. Bayesian estimation gives posterior 

densities from which the Bayesian analogs of frequentist stability measures can be taken, e.g., 

the 2.5% and 97.5% quantiles of the posterior density as analogous quantities to a 95% 

confidence interval. Though it is generally recommended in the literature that the Newton 

estimate of the Hessian be used to provide asymptotic standard errors, we have tried both 

methods on several data sets and it has never seemed to make an appreciable difference.  

Well-chosen starting values are needed to ensure convergence when more than a few 

variables are included in the model. We have found two effective approaches to generating 

starting-values. Ferrari and Cribari-Neto (2004) suggest using the OLS estimators from the 

regression on the link-transformed dependent variable for the location sub-model. For 

example, if the location sub-model link is the logit then starting-values for the β would be 

obtained via  

ln( yi/(1 –  yi)) = XβOLS + εi. 

In general the OLS estimates track the location model tolerably well, though of course the 

standard errors will be inefficient and, more importantly, the variance structure will be 

limited to an intercept parameter. Unfortunately, to our knowledge there seems to be no 

similar proposal for starting-values of the coefficients in the dispersion sub-model. 

The second approach is to begin with the null model (i.e., intercept-only sub-models with 

coefficients β0 and δ0), using the method of moments to provide starting-values for β0 and δ0. 

Then the resultant maximum-likelihood estimates of β0 and δ0 are used along with starting-

values close to 0 for of β1 and/or δ1 (β1 = δ1 = 0.1, say), and maximum-likelihood estimates 

for β0, δ0, β1 and/or δ1 are obtained. These in turn are used as starting-values for the next 
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more complex model, with starting-values near 0 used for each new term being introduced 

into the model. Models can be built up one or more terms at a time in this way, although 

adding more than one term at a time is riskier.  

Another estimation issue is that covariates with particularly large absolute values may 

result in a loss of precision in estimates or create problems for the estimation algorithms. This 

is due to the evaluation of exponents, and we have found that absolute values greater than 

around 30 can cause difficulties. These covariates may need to be rescaled to smaller ranges. 

The loss of numerical precision due to variables with widely different scales, e.g., one 

variable in millions and the other in thousandths, is common to all estimation procedures and 

is not unique to beta regression. Rescaling in this case is required. 

A third practical issue is the treatment of endpoints. Although 0 and 1 may be genuine 

outcome values, their logits are undefined. Two obvious remedies are proportionally 

“shrinking” the range to a sub-range nearly covering the unit interval (e.g., [.01, .99]) or 

simply adding a small amount to 0-valued observations and subtracting the same amount 

from 1-valued observations while leaving the other observations unchanged. Both methods 

bias the estimates toward no effect. A method that is frequently used in practice in areas such 

as signal detection theory is to add 1/2N to a 0 observation and subtract 1/2N from a 1 

observation, where N is the total number of observations (MacMillan and Creelman 2005, pp. 

8-9). This has no effect on the interior points but could introduce bias if there are a non-trivial 

number of boundary values. The best option may be to experiment with different endpoint 

handling schemes and see whether the parameter estimates change in any appreciable way. 

Our recommendation applies to a sample of scores from a continuous bounded scale that 

has already been linearly transformed to the [0,1] interval. We may transform the sample 

scores to a variable in the open (0,1) interval by the weighted average: 

y” = [y(N – 1) + s]/N, 
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where N is the sample size and s is a constant between 0 and 1. From a Bayesian standpoint, s 

acts as if we are taking a prior into account. A reasonable choice for s would be .5.  

Finally, researches will need to consider whether beta regressions can be applied to a 

discrete dependent variable, even an interval-level one.  It is common practice to apply 

normal-theory regression to variables that have only a few scale values, e.g., survey items 

with a response range from 1 to 7, and researchers are likely to be motivated to do the same 

with beta regression. Tamhane, Ankenman and Yang (2002) discuss the use of a beta 

distributed underlying variable for ordinal data. They indicate that using the raw discrete 

scores works reasonably well, though they provide a “continuizing” procedure that they show 

improves the mean square error somewhat. Their procedure simply amounts to uniformly and 

randomly assigning values to identical observations within the range of their “bin.”  

For the present, researchers will have to rely on practical experience in the absence of 

theoretical results regarding this issue. A simulation study showing how beta regression 

degrades in the presence of discretization would be desirable—if in doubt compare an ordinal 

regression and beta regression. In the meantime, we recommend a linear transformation of a 

discrete equal-interval scale that assigns values to bin midpoints. A variable Y with n+1 scale 

values {a, a+b, a+2b, …, a+nb} is transformed into 

y′ = (2y – a)/2(nb + a).  

For example, the seven scale values {1, 2, 3, 4, 5, 6, 7} are transformed into {1/14, 3/14, …, 

13/14} which are the midpoints of the seven bins equally dividing the [0,1] interval.  

Implementation in statistical packages 

In this section we briefly describe the implementations in R/SPlus, SPSS, and SAS. All 

three implementations require the user to input model terms and starting-values, but 

otherwise make no special demands. Whenever possible, we recommend fitting beta 

regression models in more than one package and using more than one set of starting-values 
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and optimization method to check convergence. We have done this for many models and beta 

regression seems to converge readily to the optimum, assuming starting values are good. 

Models with several terms in the dispersion sub-model, however, are more difficult to 

estimate.  

The current implementation in R and SPlus provides the maximum likelihood value 

attained by the model, coefficients, gradient for the coefficients, asymptotic standard-error 

estimates and p-values. Predicted values and residuals also can be output or saved in the data-

file. It uses two functions (“betareg” and “grad”) and a small set of output commands, all of 

which can be used in the Commands window or saved as scripts. The SPlus version uses the 

nlminb quasi-Newton routine for MLE and the Venables and Ripley (1999) vcov.nlminb in 

the MASS library for computing the Hessian and the asymptotic estimates. The R version 

uses the optim routine for MLE with the BFGS quasi-Newton method. A version of optim for 

SPlus also is available in the MASS library.  

In SPSS, beta regression models can be fitted under its Nonlinear Regression (NLR and 

CNLR) procedure. We have written a syntax shell and documentation so that users need only 

supply a model and starting-values. The CNLR procedure outputs an iteration history and a 

convergence message. SPSS uses numerical approximations to the derivatives, so the analytic 

score function and Hessian are not needed. There are subcommands that provide predicted 

values, residuals, gradient values, and bootstrap standard-error estimates for the coefficients. 

However, the Hessian and asymptotic standard error estimates are not currently available.   

In SAS, proc nlmixed and proc glimmix will estimate a beta regression. The 

glimmix program does not allow a heteroscedasticity model but does generate reasonable 

estimates for variance component models with beta responses, whereas the examples we have 

tried using nlmixed did not converge. Anyone who has a basic familiarity with SAS can 

code up their own model easily using our heavily commented syntax file as an example. 
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There are many choices for the numerical optimizer to be used. Even for Newton methods, 

the analytic score function and Hessian are not needed as SAS will use automatic 

differentiation to obtain the derivatives. The quasi-Newton method BFGS seems to be a solid 

all-around choice in practice, with the trust region Newton method being useful for more 

difficult problems. The output of nlmixed is extensive. Detailed iteration information is 

available for each estimated parameter, along with the likelihood, AIC, BIC, and asymptotic 

confidence intervals. In addition to the basic output, it is possible to use additional command 

statements to generate predicted values, residuals, and to save output in RTF and LaTex 

format. To obtain bootstrap or jackknife statistics, SAS Institute has the freely downloadable 

jackboot macro on their website.  
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